Государственное автономное профессиональное образовательное учреждение «Городецкий Губернский колледж»

ОСНОВЫ МАТЕРИАЛОВЕДЕНИЯ

Методические рекомендации по выполнению практических работ

Рассмотрено на заседании методической комиссии преподавателей профессий и специальностей

технических

Печатается по решению методического совета ГАПОУ «Городецкий Губернский

колледж»

Разработчик: Сульдина Валерия Вячеславовна

Рецензент: Матросов А.В.

Основы материаловедения. Методические рекомендации по выполнению практических работ - г. Городец, ГАПОУ «Городецкий Губернский колледж», 2018

Методические рекомендации разработаны для руководства деятельностью обучающихся на практических занятиях по учебной дисциплине ОП.03 Основы материаловедения по программе подготовки квалифицированных рабочих и служащих 15.01.05 (ручной и частично механизированной сварки (наплавки)

Содержание

Пояснительная записка	4
Практическое занятие №1Ознакомление с макро и микроструктурой различных	
металлов и сплавов	5
Практическое занятие №2 Классификация чугунов	11
Практическое занятие №3 Маркировка сталей	15
Практическое занятие №4 Маркировка цветных металлов и сплавов	20
Используемые источники	25

Пояснительная записка

Методическое пособие является подробным руководством для выполнения обучающимися практических заданий по дисциплине ОП.03 Основы материаловедения по профессии 15.01.05 Сварщик (ручной и частично механизированной сварки (наплавки).

Каждая практическая работа проводится после изучения обучающимися соответствующей темы. Задания составлены в соответствии с рабочей программой по дисциплине ОП.03 Основы материаловедения.

Началу практической работы предшествует краткая вводная беседа преподавателя, в ходе которой преподаватель разъясняет цели и задачи проводимого занятия.

В описании каждого практического занятия изложены их тема, цель, приведены методические указания по методике выполнения работы. По каждому практическому занятию должен быть выполнен отчет в соответствии с ГОСТ 2.105-95 «Общие требования к текстовым документам».

Все выполненные и подписанные преподавателем отчеты по практическим работам рекомендуются брошюровать в скоросшиватель. В содержании указывается перечень всех практических работ. Листы отчетов должны иметь сквозную нумерацию. Папка с отчетами по практическим занятиям является одним из оснований для выставления итоговой оценки по дисциплине.

Практическое занятие №1

Ознакомление с макро и микроструктурой различных металлов и сплавов

Цель:

- иметь представление о существующих методах исследования строения металлов и сплавов;
- ознакомиться с методами макроскопического анализа и изучить характерные виды макроструктур;
- ознакомиться с устройством металлографического микроскопа, с методикой исследования микроструктуры металлов и сплавов, изготовлением шлифов;
- научиться пользоваться металлографическим микроскопом для исследования микросруктуры.

Оборудование: готовые протравленные микрошлифы, лупа,металлографический микроскоп.

Макроскопический анализ металлов

1. Содержание работы

Обучающемуся выдаются готовые протравленные макрошлифы. Он изучает их, определяет методы травления, зарисовывает микроструктуры с пояснением.

2. Теоретические сведения

Макроструктурой называется строение металла, видимое без увеличения или при небольшом увеличении до 10...30 раз с помощью лупы.

Макроструктура исследуется непосредственно на поверхности изделия, на изломе или на специально подготовленном образце (темплете), который называется макрошлифом. Макрошлиф получают после шлифования и последующего травления поверхности специальными реактивами.

Макроанализ применяется для выявления дендритного строения литых деталей, газовых пузырей, пустот, трещин, шлаковых включений, структурной неоднородности, качества сварных соединений, ликвации серы и фосфора, расположения волокон в поковках, штамповках и т. д.

3. Порядок приготовления макрошлифов

- **1.** Вырезка образца в определенном месте детали в зависимости от цели проводимых исследований, обработка исследуемой поверхности вручную или на металлорежущем станке.
- **2.** Последовательное шлифование на шлифовальных бумагах с постепенно уменьшающимся размером зерен абразива.
 - 3. Промывка, обезжиривание спиртом, травление, промывка и просушка.

Методы травления.

Выявление ликвации серы. Для выявления в стали ликвации серы применяют метод Баумана. Макрошлиф протирают ватой, смоченной в спирте. На поверхность макрошлифа накладывают лист фотобумаги, вымоченной в течение 5...10 мин в водном растворе с массовой долей серной кислоты 5 %, проглаживают резиновым валиком для удаления излишков раствора и пузырьков газа, выдерживают 2-3 мин и осторожно снимают.

Отпечаток промывают в воде, фиксируют в растворе с массовой долей гипосульфита 25 %, снова промывают и высушивают. Коричневые пятна на фотобумаге соответствуют участкам поверхности шлифа, обогащенным серой. Фотобумага окрашивается в результате взаимодействии серной кислоты и MnS:

$$MnS+H_2SO_4=MnSO_4+H_2S$$
.

Сероводород действует на бромистое серебро эмульсионного слоя и при этом образуется сернистое серебро, имеющее темно-коричневый цвет:

$$2AgBr+H_2S=Ag_2S+2HBr$$
.

Выявление ликвации фосфора. Поверхность образца протирают ватой, смоченной спиртом; образец погружают на 1...2 мин в раствор состава: 85 г хлористой меди, 53 г хлористого аммония в 1000 см³воды. В результате обменной реакции железа с раствором на поверхности образца осаждается слой меди. Образец вынимают из реактива, протирают ватой под струей воды для удаления слоя меди, и просушивают.

Более темные участки на поверхности макрошлифа обогащены фосфором. На светлых участках содержание фосфора меньше.

Выявление строения литой стали. Дендритное строение литой стали выявляют травлением в водном растворе с массовой долей персульфата аммония 15 %, предварительно подогретом до 80...90°C. Образец погружают в горячий раствор на 10...15 мин, затем промывают водой и просушивают.

Выявление волокнистого строения стали. Для выявления волокнистости применяют реактив и методику для выявления ликвации фосфора, описанные выше.

Выявление структуры сварного шва на углеродистых сталях. Для выявления структуры сварного шва на углеродистых сталях применяют спиртовой раствор с массовой долей азотной кислоты 4 %. Макрошлиф травят, протирая ватным тампоном, смоченным в реактиве, или погружая в реактив с последующей промывкой в воде и сушкой. Продолжительность травления до тридцати минут.

Выявление ликвации углерода или глубины закаленного слоя. Для выявления ликвации углерода или глубины закаленного слоя применяют реактив Гейне, содержащий 35 гСuСl₂и 53 гNH₄Clв 1000 см³воды. Образец погружают в реактив. В результате обменной реакции поверхность покрывается слоем меди. На участках обогащенных углеродом, закаленных или имеющих дефекты (поры, раковины, трещины и т.п.), медь выделяется менее интенсивно и не защищает поверхность от травления хлористым аммонием. Эти участки окрашиваются в темный цвет. Таким реактивом можно выявлять также структуру сварного шва и зоны термического воздействия.

Выявление дефектов, нарушающих сплошность металла.

Для выявления дефектов на изделиях из углеродистых и низколегированных сталей нужен реактив, состоящий из $4...10 \text{ см}^3$ азотной кислоты и $90...96 \text{ см}^3$ воды.

Травитель применяют в холодном состоянии. Продолжительность травления до 30 мин. Макрошлиф погружают в раствор или протирают его поверхность ватным тампоном, смоченном в реактиве, промывают и сушат. Для более контрастного выявления структуры полезна тонкая шлифовка или полировка.

4. Правила техники безопасности

- 1. Соблюдать правила безопасности при обращении с реактивами, использовать средства защиты рук и дыхания (резиновые перчатки, респиратор). Приготовление травителей производить в вытяжном шкафу.
- 2. Соблюдать правила безопасности приготовления шлифов. Не касаться руками вращающегося абразивного круга.
 - 3. При работе на микроскопе не касаться токоведущих частей. Проверить заземление.

5. Порядок выполнения работы

- 1. Получить у преподавателя комплект готовых протравленных макрошлифов;
- 2. Исследовать и зарисовать макроструктурой деталей:
 - после сварки трением;
 - после электродуговой сварки;
 - после наплавки металла на основном металле;
 - после цементации.
- 3. Привести режим травления каждого макрошлифа.
- 4. Зарисовать характерные изломы:
 - усталостный;
 - хрупкий с указанием структуры излома.

6. Содержание отчета

- 1. Описание методики выявления структуры макрошлифа.
- 2. Зарисовка и характеристика макроструктуры.

7. Контрольные вопросы

- 1. Что называется макроструктурой?
- 2. Что представляет собой макрошлиф?
- 4. Что можно выявить на отполированном, но не протравленном макрошлифе?
- 5. С какой целью макрошлиф подвергают травлению?
- 6. Может ли макрошлиф помочь определить причину брака, допущенного при изготовлении детали?
- 7. Что дает изучение макрошлифа?
- 8. Можно ли по виду макроструктуры определить, какой обработке подвергся исследуемый образец?
- 9. Можно ли исследовать макроструктуру массивной детали без ее разрушения?
- 10. Основные этапы подготовки макрошлифа?
- 11. Что можно определить по виду излома?
- 12. Что называется микроструктурой?

Микроскопический анализ металлов

1. Содержание работы

Студент изучает устройство микроскопа, его оптическую схему, правила обращения с

микрошлефами и работы на металлографическом микроскопе. Проводит рабочую настройку микроскопа, зарисовывает увиденную микроструктуру, определяет увеличение микроскопа.

2. Теоретические сведения

Микроанализ — это исследование металлов и сплавов при помощи оптических микроскопов с увеличением от 50 до 2000 раз. Строение металлов, выявленное с помощью микроскопа, носит название микроструктуры. Изучение микроструктуры позволяет обнаружить пороки строения, изменение внутреннего строения металла и сплава при механическом, термическом и других видах воздействия. Для выявления микроструктуры металлов готовят специальные образцы, называемые микрошлифами.

3. Порядок приготовления микрошлифов

1. Вырезка образцов вручную или на металлорежущем станке из наиболее ванного для исследования участка детали.

Оптимальные размеры образцов – цилиндр диаметром 10-12 мм и высотой 10-15мм или куб со стороной 10-15 мм.

- 2. Получение плоской поверхности при помощи напильника или обработки на абразивном круге.
- 3. Последовательная обработка на шлифовальных бумагах с постепенно уменьшающимся размером зерен абразива, положенных на твердую плоскую поверхность. При переходе с одного номера бумаги на другой шлиф поворачивают на 90°и шлифуют до полного удаления рисок, полученных в процессе предыдущей обработки. Наряду с ручным шлифованием существует и механическое на специальных шлифовальных станках. При каждом переходе к следующему номеру бумаги следует тщательная промывка шлифа водой для удаления оставшихся на поверхности абразивных зерен.

Полирование на быстровращающихся дисках, обтянутых замшей, фетром или мягким сукном, или вручную на мягкой ткани с применением шлифующих смесей (пасты ГОИ, порошки оксидов, карбидов, искусственных или естественных алмазов). Полирование считается законченным, если при рассмотрении поверхности шлифа в микроскопе риски не обнаруживаются.

- 4. Промывка водой, обезжиривание спиртом, просушка фильтровальной бумагой.
- 5. Травление полированной поверхности специальным реактивом для выявления микроструктуры. Реактивы выбирают в зависимости от состава исследуемого сплава, его структурного состояния и цели исследования. Так, например, для травления углеродистой стали применяется спиртовой раствор с массовой долей азотной кислоты 4 %; для алюминиевых сплавов водный раствор с массовой долей фтористоводородной кислоты 0,5 %.
- 6. Различные структурные составляющие, подвергшиеся воздействию реактива в неодинаковой степени, по-разному отражают свет. Структура, травящаяся сильнее, кажется под микроскопом более темной, так как рассеивает свет сильнее, чем слабо травящаяся. Границы зерен чистых металлов и твердых растворов выглядят под микроскопом в виде тонкой сетки, поскольку на них сосредоточены многочисленные дефекты кристаллической решетки и здесь атомы металла легко переходят в раствор.
- 7. Тщательная и возможно быстрая промывка шлифа водой и спиртом для удаления остатков реактива и сушка.

4. Правила обращения с микрошлифами

- **1.** Для предотвращения преждевременной порчи микрошлифов необходимо соблюдать следующие правила.
- **2.** Шлифы должны храниться комплектами в коробочках на слое ваты. Запрещается нарушать комплектность и перекладывать шлифы из одной коробочки в другую. Микрошлиф можно брать из коробочки только за боковую поверхность и ставить только на предметный столик микроскопа.
- **3.** Во избежание загрязнения и повреждения изучаемой поверхности микрошлифов нельзя касаться ее пальцами, тереть, передвигать по поверхности предметного столика и т. д.
- **4.** При повреждении шлифа студент обязан во внеурочное время приготовить его заново.
- **5.** Перед началом работы студент получает у преподавателя комплект шлифов и по окончании работы сдает его преподавателю.

Для изучения структуры металлов и сплавов применяется металлографический микроскоп модели МИМ-7 (рис. 1).

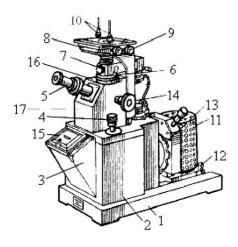


Рис. 1 Общий вид микроскопа МИМ - 7

1 -основание микроскопа; 2 - корпус; 3 - фотокамера; 4 - винт микрометрической (точной) подачи объектива; 5 -визуальный тубус; 6 - рукоятка диафрагмы; 7 - иллюминатор; 8 - предметный столик; 9 - рукоятка перемещения столика; 10 - клеммы; 11 - осветитель; 12 - стопорное устройство осветителя; 13 - рукоятка смены светофильтров; 14 - винт грубой подачи столика; 15 - рамка с матовым стеклом; 16 - анализатор; 17 - корпус центральной части.

На рис. 1 приведен общий вид микроскопа МИМ-7. Следует обратить особое внимание на правильность обращения с органами управления микроскопом (поз. 4, 9, 14), а также со стопорным винтом грубой подачи, расположенным под винтом (14) с левой стороны микроскопа (на рис. 1 не виден).

Питание осветительной лампы микроскопа осуществляется от трансформатора ТР-17, выполненного в виде отдельного блока, установленного на лабораторном столе возле микроскопа. На этом блоке имеется переключатель напряжения (от 0 до 30 В), подаваемого на лампу и вольтметр, измеряющий это напряжение.

5. Подготовка микроскопа к работе производится в следующем порядке:

- 1. Убедиться, что трансформатор TP-17 находится в выключенном состоянии. Для этого ручку его переключателя перевести против стрелки в крайнее положение до упора.
- 2.Подключить штекерную розетку осветительной лампы микроскопа к штекерной вилке на задней стенке трансформатора ТР-17.
- 3.Включить шнур питания трансформатора в сетевую розетку 220B, соблюдая обычные требования безопасности.
- 4.Включить минимальное напряжение питания осветительной лампы микроскопа. Для этого повернуть ручку переключателя на трансформаторе ТР-17 на один щелчок. При этом сквозь отверстия в кожухе лампы микроскопа будет видно ее свечение.

Примечание: При визуальном изучении микроструктуры не следует устанавливать более высокие напряжения питания осветительной лампы микроскопа.

- 5. Проверить прохождение светового луча в отверстие предметного столика (8) по наличию светового пятна при поднесении к отверстию ладони или листа бумаги. При необходимости переместить предметный столик с помощью рукояток (9).
- 6.Поместить микрошлиф на отверстие предметного столика полированной стороной вниз. В дальнейшем для перемещения шлифа использовать рукоятки (9) перемещения предметного столика.

7. Наблюдая в окуляр, осторожным вращением винта (14) грубой подачи стола "поймать" изображение, не стараясь добиться его четкости, и придерживая винт (14) правой рукой, левой рукой без особого усилия зажать стопорный винт грубой подачи, расположенный с левой стороны микроскопа под винтом (14).

8.Вращением винта (4) микрометрической подачи добиться четкого изображения микроструктуры.

6. Содержание отчета

- 1. Оптическая схема микроскопа с пояснениями;
- 2. Зарисовка структуры микрошлифа с указанием увеличения.

7. Контрольные вопросы

- 1. Что называется микроструктурой?
- 2. Что представляет собой микрошлиф?
- 3. С какой целью микрошлиф подвергают травлению?

Практическое занятие №2

Классификация чугунов

Цель урока:

- получить основные сведения о принципах классификации и маркировки чугунов;
- ознакомиться с делением чугунов по классификационным группам;
- приобрести навыки в чтении механических свойств чугунов по их маркировке.

Содержание работы:

Классифицировать чугуны - отнести к соответствующему классу

Расшифровывая марку чугуна, необходимо дать полное название и раскрыть сод ержание всех букв и цифр марки.

1. Теоретические сведения

В зависимости от того в какой форме присутствует углерод в сплавах различают чугуны: белые, серые, высокопрочные, чугуны с вермикулярным графитом (особый сплав магния и железа), ковкие чугуны.

Белыми называют чугуны, которых весь углерод находится В связанном состоянии виде иементита. Из-за большого количества цементита они твердые, хрупкие, для изготовления деталей машин используются.

В промышленности широко применяются серые, высокопрочные и ковкие чугуны, в которых весь углерод или часть его находится в виде графита.

обеспечивает Графит хорошую обрабатываемость, высокие антифрикционные свойства вследствие низкого коэффициента трения. Вместе с тем включения графита снижают твердость, прочность и пластичность, так как нарушают сплошность металлической основы сплава.

Серыми формой графита. называют чугуны c пластинчатой СЧ30. Обозначают СЧ20, СЧ25, Цифра серые ЧУГУНЫ индексами обозначении указывает предел прочности чугуна при растяжении В на 0,1Мпа (таблица 1).

Таблица 1. Состав передельного чугуна,%

Материал	С	Si	Mn	P	S
Низкоуглеродистая	44,4	0,561,26	До 1,75	0,10,3	0,030,07
сталь					

Таблица 2. Свойства серых чугунов

Марка чугуна	Предел прочности	Относительное	Твердость НВ			
	на растяжение σ_{ℓ} , 0,1	удлинение δ , %				
	МПа					
	Серые чугуны (ГОСТ 1412-85)					
СЧ10	100	-	143-229			
СЧ15	150	-	163-229			
СЧ20	200	-	170-241			
СЧ25	250	-	180-245			

СЧ30	300	-	181-255
СЧ35	350	-	220-275

Высокопрочными называют чугуны, в которых графит имеет шаровидную форму.

Такие модифицированием ЧУГУНЫ получают магнием, который вводят 0,02...0,08% жидкий ЧУГУН В количестве или магнием никелем. Шаровидный графит менее сильный концентратор напряжений, чем пластинчатый. Поэтому механические свойства он меньше снижает металлической основы. Из изготавливают него крупные коленчатые валы, шпиндели к крупным станкам.

Марка высокопрочного чугуна состоит из букв ВЧ и числа, обозначающего уменьшенное в 10 раз значение его временного.

Таблица 3. Свойства высокопрочного чугунов

Марка чугуна	Предел прочности	Относительное	Твердость НВ
	на растяжение ов,	удлинение δ , %	
	0,1 МПа		
	Высокопрочные чуг	уны (ГОСТ 7293-85)	
ВЧ35	350	22	140-170
ВЧ45	450	10	140-225
ВЧ60	600	3	192-227
ВЧ80	800	2	248-351
ВЧ100	1000	2	270-360

графитом формируется чугунов вермикулярным структура под действием комплексного модификатора, содержащего магний И редкоземельные металлы. Графит приобретает шаровидную (около 40%) И вермикулярную виде мелких тонких прожилок форму. Чугуны вермикулярным графитом производят 4-x марок: ЧВК-30, ЧВК-35, ЧВК-40, ЧВК-45 (таблица 4). Число В марке обозначает уменьшенное В 10 значения временного сопротивления. раз По механическим свойствам c вермикулярным графитом чугуны занимают промежуточное значение между серым высокопрочным. особенно при циклических нагрузках. Отличаются прочнее серых чугунов, хорошей теплопроводимостью, что обеспечивает их стойкость к теплосменам.

Таблица 4. Свойства вермикулярного чугуна

Марка чугуна	Предел прочности	Относительное	Твердость НВ			
	на растяжение ов,	удлинение δ , %				
	0,1 МПа					
Чугуны с вермикулярным графитом (ГОСТ28384-84)						
ЧВГ-30	300	3	130-180			
ЧВГ-35	350	2	140-190			
ЧВГ-40	400	1,5	170-220			
ЧВГ-45	450	0,8	190-250			

Ковким называются чугуны, в которых графит имеет *хлопковидную* форму.

Такой графит по сравнению с пластинчатым меньше снижает механические свойства металлической основы, вследствие чего ковкие ЧУГУНЫ ПО обладают более сравнению С серыми высокими прочностью И пластичностью.

Ковкие чугуны обозначаются индексом и последующими цифрами, первая из которых характеризует его прочность, а вторая — пластичность: КЧ-30-6, КЧ-45-7 и т.д. (таблица 5).

Таблица 5 Свойства ковкого чугуна

			2 2
Марка чугуна	Предел прочности	Относительное	Твердость НВ
	на растяжение ов,	удлинение δ , %	
	0,1 МПа		
	Чугуны	и ковкие	
КЧ-30-6	300	6	100-163
КЧ-35-8	350	8	100-163
КЧ-37-12	370	12	110-163
КЧ-45-7	450	7	150-207
КЧ-60-3	600	3	200-269
КЧ-80-1,5	800	1,5	270-320

2. Технологические свойства металлов и сплавов

При выборе материала при создании конструкции необходимо комплексно учитывать его прочностные, технологические и эксплуатационные характеристики.

Таблица 6. Обрабатываемость конструкционных материалов резанием

Конструкционные материал деталей машин							
Легкообрабатываемые	Средней	Ниже средней	Труднообрабатываемые				
	обрабатываемости	обрабатываемости					
Мягкие чугуны (НВ 140160 Ко < 1	Чугуны средней твердости (НВ 160180) Ко = 1	Твердые чугуны (НВ 180200) Ко > 1					
Уловны	е обозначения: Ко- ко	эффициент обрабать	іваемости				

3. Содержание практического занятия

Занятие состоит в освоении классификации чугунов, выделение в отдельные классификационные группы, расшифровки их по маркировке.

4. Порядок выполнения работы

- 1. Ознакомиться с заданным списком сплавов;
- 2. Выявить классификацию группы, к которым они принадлежат;
- 3. Расшифровать их состав по маркировке;
- 4. Заполнить таблицу с данными по классификации сплавов, их механическим свойствам и обрабатываемость по изученному списку;
- 5. Ответить на контрольные вопросы.

5. Задание

Nº	Список материалов
варианта	
1.	СЧ10,ВЧ35, ЧВГ-30, КЧ-30-6
2.	СЧ15,ВЧ45, ЧВГ-35, КЧ-35-8
3.	СЧ20,ВЧ60,ЧВГ-40,КЧ-37-12
4.	СЧ25,ВЧ80,ЧВГ-45,КЧ-60-3.
5.	СЧ30,ВЧ100, ЧВГ-30, КЧ-45-7
6.	СЧ35,ВЧ35,ЧВГ-35,КЧ-45-7
7.	СЧ10,ВЧ45,ЧВГ-40,КЧ-30-6
8.	СЧ15,ВЧ60,ЧВГ-45,КЧ-35-8
9.	СЧ20,ВЧ80,ЧВГ-30,КЧ-37-12
10.	СЧ25,ВЧ100,ЧВГ-35,КЧ-60-3
11.	СЧ30,ВЧ35, ЧВГ-35, КЧ- КЧ-30-6
12.	СЧ35,ВЧ45, ЧВГ-45, КЧ-35-8
13.	СЧ10,ВЧ60, ЧВГ-30, КЧ-60-3
14.	СЧ25,ВЧ80, ЧВГ-30, КЧ-45-7

Таблица 7. Характеристика сплавов по заданию

Классификационная группа	Марка сплава	Обрабатываемость сплава, Ко	Твердость НВ	Относительное удлинение б, %
Чугун серый				
Чугун				
высокопрочный				
Чугун с				
вермикулярным				
графитом				
Чугун ковкий				

6. Содержание отчёта

- 1. Наименование, цель.
- 2. Заполнить таблицу 7 с характеристикой сплавов по заданию.

7. Контрольные вопросы

- 1. Дайте характеристику белому чугуну?
- 2. Область применения чугунов марки ВЧ45?

Практическое занятие №3

Маркировка сталей

Цель урока:

- получить основные сведения о принципах классификации и маркировки сталей;
- ознакомиться с делением сталей по классификационным группам;
- приобрести навыки в чтении химических свойств по их маркировке.

Содержание работы:

Классифицировать сталь - отнести к соответствующему классу сталей по признакам:

- химическому составу,
- структуре,
- применению.

Расшифровывая марку стали, необходимо дать полное название и раскрыть соде ржание всех букв и цифр марки. Следует иметь в виду, что в ряде сплавовсодержание ком понентов прямо не указано в марке, но следует из принципов маркировки данного ма териала и должно быть отражено при расшифровке.

1. Теоретические сведения

Сплавы на основе железа называют сталями и чугунами.

Сталями принято называть сплавы железа с углеродом, содержание до 2,14 % углерода. Кроме того, в состав сплава обычно входят марганец, кремний, сера и фосфор; некоторые элементы могут быть введены для улучшения физико-химических свойств специально (легирующие элементы).

В зависимости от химического состава различают стали углеродистые и легированные.

2.Углеродистые конструкционные стали

Маркировка углеродистых сталей зависит от их качества и назначения.

Стали обыкновенного качества имеют 3 группы поставки: А,Б,В. Стали группы А поставляются с гарантированными механическими свойствами, химический состав не регламентируют. Стали группы Б поставляются с гарантированным механическим составом, механические свойства не гарантируются.

Стали группы В поставляются с гарантированными химическим составом и механическими свойствами. О механических свойствах и химическом составе информацию получают в сопроводительных документах.

Все эти стали обыкновенного качества (ГОСТ 380-71) маркируются буквами Ст, после которых ставится цифра от 0 до 6. Впереди марки — буква, указывающая группу поставки (для стали группы A — не ставится). В конце марки указывается степень раскисления: пс, кп (для спокойных — не указывают).

Буквы кп (сталь кипящая), пс (сталь полуспокойная), сп (сталь спокойная) обозначают способ раскисления.

Чем больше номер, тем больше углерода и других химических элементов, и механических свойств стали, а также выше ее механические свойства.

Эти стали хорошо свариваются, куются, штампуются и обрабатываются резанием.

Применяются для изготовления сварных строительных конструкций, крепежных изделий, малонагруженных деталей машин, а также стандартных и нормализованных деталей: рукояток, кнопок, ручек, заглушек, пробок, петель шарнирных и т.д.

Пример:

Стаз-сталь конструкционная, углеродистая, обыкновенного качества, условный номер 3.

 $Cm3\kappa n$ —углеродистая конструкционная сталь обыкновенного качества, группы поставки A, с номером 3, кипящая.

BCm4nc — углеродистая конструкционная сталь обыкновенного качества, группы поставки B, с номером 4, полуспокойная.

2. 1 Углеродистая конструкционная качественная сталь

Маркируются цифрами 08,10,15,20,25...до 85. Цифры означают среднее содержание углерода в сотых долях процента. Если сталь содержит повышенное количество марганца (0,8-1,2%), то после цифр ставится буква Γ . В конце марки указывается степень раскисления (кп или пс): 05кп, 08кп, 08пс, 10пс, 15кп, 15пс, 15,18кп, 20кп, 20пс, 20, 25, 30, 35, 40, 45, 50, 55, 60.

В марках, где способ раскисления не указан, сталь спокойная.

С увеличением массовой доли углерода повышаются механические свойства.

Из низкоуглеродистых качественных сталей марок 05, 08кп, 08пс, 10, 10пс, 10кп изготавливают детали штамповкой и холодной высадкой: трубки, прокладки, колпачки, крепежные детали, шайбы, вилки, втулки и тяги.

Стали марок 15, 20, 25 идут на изготовление малонагруженных деталей машин – валиков, втулок, пальцев, упоров, копиров, осей, шестерен и других деталей, работающих при температурах 40...425°C.

Стали марок 30-60 идут на изготовление отечественных деталей машин, улучшаемых путем закалки с последующим отпуском и нормализацией: шатунов, коленчатых валов, шлицевых валиков, тяг, штоков, сухарей, зубчатых колес и др.

Пример:

 $05~\kappa n$ — сталь углеродистая, конструкционная, качественная, кипящая, содержит 0.05~% С.

60- сталь углеродистая, конструкционная, качественная, спокойная, содержит $0.60\%\mathrm{C}$.

40 – сталь углеродистая, качественная, конструкционная, спокойная с содержанием углерода 0,4%.

 $65\Gamma nc$ -сталь качественная, конструкционная, углеродистаяс содержанием углерода 0,65%, более 0,8% марганца, полуспокойная.

2.2 Углеродистые инструментальные стали

ГОСТ 1435-99. Маркируется большой буквой У и цифрами, которые означают содержание углерода в десятых долях процента. Эти стали чаще всего качественные. Однако сталь имеет повышенное качество, то в конце марки ставится буква А.

- качественная сталь У7, У8, У8Г, У9, У10, У11, У12;
- высококачественная сталь У7А, У8А, У8ГА, У9А, У10А, У11А, У12А.

В маркировке буква У обозначает, что сталь углеродистая инструментальная. Цифры, следующие за буквой У, соответствуют массовой доле углерода в десятых процента. Буква Г указывает на повышенное содержание марганца (0,4...0,6%); буква А, стоящая в конце марки, - на то, что сталь высококачественная, имеет пониженное содержание вредных примесей (серы и фосфора). Марки стали без буквы А в обозначении – качественные.

Из-за ограниченной свариваемости эта сталь не применяется для сварных конструкций, но при необходимости сваривается методом контактной сварки.

Углеродистые инструментальные стали находят широкое применение для изготовления слесарно-монтажного, измерительного, столярно-плотничного инструмента:

зубила, долота, плоскогубцы, пилы, фрезы, зенковки, калибры, сверла, надфили, напильники и т.д.

Инструмент, изготовленный из углеродистых инструментальных сталей, обладает хорошими режущими свойствами.

Пример:

V8- инструментальная углеродистая со средним содержанием углерода 0.8% (имеет точно такой же химический состав, что и Сталь 80, но отличается структурой и свойствами).

У12А- углеродистая инструментальная сталь, 1,2 % углерода, высокачественная.

Таблица 1. Расшифровать марки углеродистых сталей

1	СтО	БСт2пс	ВСт5кп	05кп	25	60Γ	У7	У10А
2	Ст1кп	БСт3сп	ВСт4пс	08	30	70Γ	У8	У11А
3	Ст2пс	БСт4	ВСт3сп	08кп	35	75Γ	У9	У12А
4	Ст3сп	БСт5кп	ВСт2	08пс	40	80Γ	У10	У13А
5	Ст4	БСт6пс	ВСт1кп	10	45	65Γ	У11	У7А
6	Ст5кп	БСт0	ВСт4сп	10кп	50	60Γ	У12	У8А
7	Ст6пс	БСт1сп	ВСт3	10пс	55	70Γ	У13	У9А
8	СтО	БСт2Г	ВСт5пс	15	60	75Γ	У7А	У10
9	Ст1сп	БСт3кп	ВСт2пс	15кп	65	80Γ	У8А	У11
10	Ст2	БСт4пс	ВСт1сп	15пс	70	65Γ	У9А	У12
11	Ст3кп	БСт5сп	ВСт4	18кп	75	60Γ	У10А	У13
12	Ст4пс	БСт6	ВСт3кп	20	80	70Γ	У11А	У7
13	Ст5сп	БСт0	ВСт1пс	20кп	25	75Γ	У12А	У8
14	Ст6	БСт1пс	ВСт2сп	20пс	30	80Γ	У13А	У9

3. Легированные стали 3.1Легированные конструкционные стали

Согласно ГОСТ 5950-73 приняты условные буквенные обозначения легирующих элементов:

Б- ниобий;П-фосфор;В-вольфрам;С-кремний;Г-марганец;Т-титан;Д- медь;Ф-ванадий;К-кобальт;Ц- цирконий;М-молибден;Ю-алюминий;Н-никель;Р-бор (если буква стоит не в начале

А-азот (если буква стоит не в начале и не марки)

в конце марки);

Первые цифры, стоящие перед буквой, показывают среднее содержание углерода: если две или три цифры - в сотых долях процента (сталь $15X\Phi$, $110\Gamma13Л$), одна – в десятых долях процента (сталь9XC). Если первых цифр нет, то это значит, что углерода в стали около 1% (сталь X12M).

Цифры стоящие после букв, означающих легирующий элемент, указывают среднее содержание данного элемента в целых единицах процента (сталь 12Х2Н4). Если за буквой отсутствует цифра, значит содержание данного элемента около 1 % (сталь 30ЧГС).

Буква A в конце, как и для углеродистой, стали, обозначает высококачественную сталь (30XГСН2A), буква Л-литейную (сталь 110Г13 Π).

Такая система маркировки охватывает большинство легированных сталей. исключение составляет некоторые группы сталей, в обозначение марки которых дополнительно вводят буквы: Р- быстрорежущие, Ш-подшипниковые. Для них правила маркировки другие.

Пример:

15XA - стал легированная конструкционная, цементуемая, высококачественная, массовая доля углерода — 0.15%, хрома — около 1%, с пониженным содержанием вредных примесей (серы и фосфора).

18ХГТ - конструкционная легированная качественная сталь с содержанием углерода 0,18% и по 1% (приблизительно) хрома, марганца и титана.

30XГСН2А - сталь легированная конструкционная улучшаемая, высококачественная, массовая доля углерода -0.3%, хрома, марганца, кремния по 1%, никеля -2%, имеет пониженное содержание вредных примесей.

 $40XH3M\Phi A$ - конструкционная, легированная качественная сталь с содержанием углерода $0,4\%, \sim 1\%$ хрома, $\sim 3\%$ никеля, $\sim 1\%$ молибдена, $\sim 1\%$ ванадия.

18Х2Н4МА — легированная конструкционная высококачественная сталь (с пониженным содержанием серы и фосфора), 2% хрома, 4% никеля, 1% молибдена, 0,18% углерода. Так как массовая доля углерода до 0,3%, сталь является цементуемой, т.е. улучшается химико-термической обработкой.

14Г2 — низко легированная, конструкционная, качественная сталь, спокойная, содержит приблизительно 14 % углерода и до 2,0% марганца.

3.2 Подшипниковая сталь

ГОСТ 801-78 (ШХ4, ШХ10, ШХ15, ШХ15СГ). В маркировке этих сталей приняты следующие обозначения: буквы ШХ — шарикоподшипниковая хромистая; буквы С, Γ — легирующие элементы (кремний и марганец); цифры показывают количество хрома в десятых долях процента.

Пример:

UIX15- легированная, подшипниковая, качественная, содержащая 1% углерода,1,5 % хрома.

3.3Сталь конструкционная повышенной обрабатываемости резанием

Обозначают буквой А и цифрой, указывающей среднее содержание углерода в сотых долях процента.

Пример:

А12- сталь, повышенной обрабатываемости, содержащая 0,12%.

3.4Легированные инструментальные стали (ГОСТ 1435-74)

Быстрорежущие инструментальные стали – обозначает высококачественные стали, предназначенные для изготовления режущего инструмента, работающего при высоких режимах резания. Обозначаются буквой Р.

Марки: 11М5Ф, Р9, Р18, Р14Ф4, Р6АМ, Р6М5К5, 11Р3АМ3Ф, Р6АМ5Ф2, Р12Ф3, Р18К5Ф2, Р9М4К8 и так далее.

В маркировке быстрорежущих сталей приняты следующие обозначения: буквой Р обозначаются все быстрорежущие стали. Цифра, стоящая справа после буквы Р, указывает на среднюю массовую долю основного легирующего элемента – вольфрама. Буква К означает кобальт, М – молибден, А – азот.

Из быстрорежущих сталей делают токарные, строгальные резцы, фрезы, развертки, модульные фрезы, долбяки, протяжки, сверла, метчики плашки.

Пример:

P18 - инструментальная высоколегированная быстрорежущая сталь, 18% вольфрама

P6M5K4 — инструментальная высоколегированная быстрорежущая сталь, содержание вольфрама 6%, молибдена 5%, 4% кобальта.

Пример:

 $9X5B\Phi$ - инструментальная, легированная, качественная, содержащая 0.9% углерода, 5% хрома, 1~% вольфрама, 1~% ванадия.

P6M5- легированная, быстрорежущая (инструментальная), качественная, содержащая 1% углерода, 6% вольфрама, 5% молибдена.

 $7X\Gamma 2$ - инструментальная легированная сталь, углерода 0,7%, приблизительно около 1% хрома, марганца 2%.

Таблица 2.Расшифровать марки легированных сталей

1	18ХГТ	ШХ15	A11	11М5Ф
2	15ХФ	ШХ4	A30	P12
3	15ХФА	ШХ15	AC14	P2M5
4	06ХФ	ШХ10	A12	P6M5
5	13ХФА	ШХ20СГ	A35	P18
6	20ХФ	ШХ10	A20	P9K10
7	20ХФА	ШХ15 СГ	Α40Γ	Р18Ф2
8	40ХФА	ШХ10	AC11	P6AM5
9	15XA	ШХ4	AC40	Р9К5
10	15X	ШХ20СГ	A35E	Р14Ф4
11	38X	ШХ15СГ	A15X	P9
12	25Γ	ШХ20СГ	A45E	Р9Ф5
13	20X	ШХ10	A11	P6M3
14	30Γ	ШХ4	A30	Р9М4К8

6. Содержание отчёта

- 1. Наименование, цель.
- 2. Расшифровать характеристики сталей. Варианты заданий занесены в таблицы 1 и 2.

7. Контрольные вопросы

- 1. Что такое сталь?
- 2. По каким признакам классифицируют углеродистую сталь?

Практическое занятие №4 Маркировка цветных металлов и сплавов

Цель урока: привить навыки расшифровок марок цветных металлов и сплавов на их основе.

Содержание работы: расшифровать марки цветных металлов и сплавов.

Теоретические сведения

Цветные металлы составляют не более 10% всех применяемых в промышленности. Они встречаются реже в природе, труднее добываются и дороже стоят, чем черные. Цветные металлы обладают очень ценными свойствами:

- высокой электро- и

- низкой температурой плавления;

теплопроводностью;

- высокой температурой плавления;

- высокой коррозионной стойкостью;

- низкой плотностью.

- высокой пластичностью:

Цветные металлы являются более дорогими и дефицитными по сравнению с черными, однако область их применения в промышленности непрерывно расширяется. Наиболее широкое применение имеют сплавы на основе алюминия, меди, магния, титана.

Для обозначения элементов, содержащихся в цветных металлах и сплавах, приняты следующие прописные буквы русского алфавита:

А - алюминий, Б - бериллий, Ж - железо, К - кремний, Кд - кадмий, Мц - марганец, М - медь, Мг - магний, Мш - мышьяк, Н - никель, О - олово, С - свинец, Су - сурьма, Ц - цинк, Φ - фосфор, Γ - титан.

1. Алюминий и его сплавы

Большинство марок алюминиевых сплавов начинаются с буквы А, обозначающей основной элемент.

ч - чистый;

л - литейные сплавы;

пч -повышенной чистоты;

с - селективный.

оч - особой чистоты;

1.1Алюминий первичный

Первичный алюминий (ГОСТ 11069-74) маркируется буквой А, после которой указывается чистота материала в виде дробной части содержания основного металла в весовых %: особой чистоты (осч) - А999; высокой чистоты (вч) - А995, А99, А97, А95 и технически чистый - А85, А8, А7, А7Е, А5, А5Е, А0. Если в конце марки стоит буква Е - металл предназначен для получения проволоки, если стоит буква Р - рафинированный.

Примеры.

A995 - первичный алюминий с содержанием основного металла 99,995 %.

A7E - первичный алюминий с содержанием основного металла 99,7 % для проволоки.

1.2 Алюминий и сплавы алюминиевые деформируемые

Деформируемые сплавы (ГОСТ 4784-74) маркируются буквами АД (алюминий деформируемый) и порядковым номером в ГОСТ. В скобках приведено цифровое обозначение марки.

1.2.1 Алюминий технически чистый.

АД00 (1010), АД0 (1011), АД 1(1013) АД (1015). Если после марки стоит буква Ш - металл для изготовления пищевой посуды.

Пример.

Алюминий АДШ - алюминий деформируемый технически чистый пищевого назначения.

1.2.2 Сплавы алюминий-магний-кремний (авиали).

Авиали АД31(1310), АД33 (1330), АД35 (1350), АВ (1340), САВ-1 разработаны в авиационной промышленности (табл. 2). Для них характерно сочетание высокой прочности с малой плотностью. Высокая пластичность после закалки облегчает обработку сплавов давлением.

1.2.3 Коррозионно-стойкие сплавы (алюминий-магний, алюминий-марганец).

Сплавы относятся к неупрочняемым термообработкой и отличаются высокой пластичностью, свариваемостью и коррозионной стойкостью. Их маркируют содержанием магния в весовых % после букв АМг. Содержание марганца в сплавах типа АМц составляет 1.1,6 %.

Пример.

АМг2 - алюминиевый сплав с содержанием 2 % магния. ГОСТ 4784-74

1.2.4. Дуралюмины.

Деформируемые термически упрочняемые (закалка + старение) сплавы. Маркируются буквой Д и порядковым номером в ГОСТ 4784-74.

Пример.

Д16 ГОСТ 4784-74 - дуралюмин № 16.

1.2.5. Высокопрочные алюминиевые сплавы.

Высокопрочные алюминиевые сплавы маркируют буквой В и их порядковым номером в ГОСТ 4784-74.

Пример.

В95 ГОСТ 4784-74 - высокопрочный алюминиевый сплав № 95.

1.2.6. Ковочные сплавы.

Сплавы (марки АК4, АК6, АК8) обладают хорошей пластичностью, стойки к образованию трещин при горячей пластической деформации. Отличаются от дуралюминов повышенным содержанием кремния (0,7. 1,2 %). Буква К означает ковочный сплав. Цифра 4, 6 или 8 после букв АК указывает порядковый номер сплава в ГОСТ.

Пример.

AK6 - алюминиевый ковочный сплав № 6 по ГОСТ 4784-74.

Примечание: сплавы типа АК, в которых после буквы К стоят другие цифры и буквы, относятся к литейным по ГОСТ 1583-89.

Пример.

AK6M2 - алюминиевый литейный сплав с содержанием 6 % кремния и 2 % меди по ГОСТ 1583-89.

1.3 Сплавы алюминиевые литейные

К литейным относятся алюминиевые сплавы (ГОСТ 1583-89) с содержанием 6.13~% кремния (силумины), хуже литейные свойства у сплавов с 4.5~% меди или 5.~12~% магния с добавкой марганца.

В марке литейных сплавов после буквы А стоят буквы, обозначающие легирующие элементы (табл.1), и сразу после нее- число весовых процентов данного элемента

(середина марочного интервала). До 1989 года действовала старая маркировка, которая состояла из букв АЛ и порядкового номера в стандарте.

Примечание: в конце марки могут быть строчные буквы, указывающие на количество примесей в сплаве: ч- чистый; пч -повышенной чистоты; оч - особой чистоты; р - рафинированный; л - литейный.

Примеры.

CAK9n4 ГОСТ 1583-89 - алюминиевый литейный сплав с содержанием 9 % кремния (К9) повышенной чистоты.

АМ5 ГОСТ 1583-89 - алюминиевый литейный сплав с содержанием 5 % меди (М5).

2. Медь и её сплавы

Буквой М в начале марки обозначают чистую медь и медно-никелевые прецизионные сплавы. Конструкционные медные сплавы имеют исторически сформировавшиеся названия - латуни и бронзы. Латунями называют медные сплавы, в которых основным легирующим элементом является цинк. Сплавы меди со всеми другими элементами называют - бронзы.

2.1 Медь чистая

Чистоту меди (ГОСТ 859-78) обозначают числом, стоящим после буквы М. Чем меньше число, тем более чистый металл (00 - высокочистая, 0 - чистая, 1, 2, 3 - технически чистая). Строчные буквы в конце марки обозначают технологию обработки металла: к - катодная; б - безкислородная; р, ф - раскисленная.

Пример.

 $M1\kappa$ - медь технически чистая № 1 по ГОСТ 859-78 катодная.

2.2 Бронза

Бронзы — это сплавы меди с оловом. Маркировка бронзы начинается с букв Бр. В зависимости от состава, назначения и метода обработки бронзы делят на литейные оловянные (ГОСТ 613-79) и безоловянные (ГОСТ 493-79); обрабатываемые давлением оловянные (ГОСТ 501774) и безоловянные (ГОСТ 18175-78).

В марке литейной бронзы после обозначения Бр стоят буквы, обозначающие легирующие элементы (табл. 1), и сразу после них - число весовых процентов данного элемента (середина марочного интервала). Иногда в конце марки стоит буква Л (литейная).

Пример.

 $\mathit{EpO5U5C5}$ - литейная бронза с содержанием 5 % олова, 5 % цинка, 5 % свинца, остальное - медь. ГОСТ 613-79.

 $\mathit{БрA7Mu15Ж3H2U2}$ - литейная бронза с содержанием 7 % алюминия, 15 % марганца, 3 % железа, 2 % никеля, 2 % цинка, остальное - медь. ГОСТ 493-79.

Бр05С25- бронза, литейная, оловянная, содержащая 5 % олова, 25 % свинца.

 $\mathit{БрA11Ж6H6}\text{-}$ бронза, литейная, безоловянная, , содержащая 11% алюминия,6% железа,6% никеля.

Обрабатываемые давлением бронзы имеют в марке после Бр перечень всех букв легирующих элементов, входящих в состав сплава. Содержание всех этих элементов (в вес. %) указывается в конце марки через тире в том же порядке, что и указанные легирующие вещества.

Примеры.

БрОЦ4-3- бронза, обрабатываемая давлением, оловянная, содержащая 4 % олова, 3 % цинка.

БрКН1-3- бронза, обрабатываемая давлением, безоловянная, содержащая 1 % кремния, 3% никеля.

 $\mathit{БрОЦС4-4-4}$ - обрабатываемая давлением бронза с содержанием - 4 % олова, 4 % цинка, 4 % свинца, остальное - медь. ГОСТ 5017-74.

БрАЖНМц9-4-4-1 - обрабатываемая давлением бронза с содержанием - 9 % алюминия, 4 % железа, 4 % никеля, 1 %марганца, остальное - медь. ГОСТ 18175-78.

2.3 Латунь (сплавы медно-цинковые)

Маркировка латуней начинается с буквы Л. В зависимости от назначения и метода обработки латуни делят на литейные (ГОСТ 17711-80) и обрабатываемые давлением (ГОСТ 15527-70).

В марке латуни, обрабатываемой давлением, после буквы Л стоит содержание меди в весовых процентах. Затем идёт перечень всех букв легирующих элементов, входящих в состав сплава. Содержание этих элементов (в вес. %) указывается в конце марки через тире в том же порядке, что и указанные легирующие вещества. Содержание главного легирующего элемента в латуни (цинк) получается как остаток до 100 %.

Пример.

 $\Pi 60$ - латунь, обрабатываемая давлением, содержащая 60%меди.

ЛЖМц59-1-1- латунь, обрабатываемая давлением, содержащая 59% меди, 1% железа, 1 % марганца.

 $\it ЛАНКМи75-2-2,5-0,5-0,5$ - обрабатываемая давлением латунь содержит 75 % меди, легирована 2 % алюминия, 2 % никеля, 0,5 % кремния, 0,5 % марганца, остальное - цинк. ГОСТ 15527-70.

В марке литейной латуни после буквы Л стоит Ц и сразу указывается содержание цинка (в весовых %). Далее в таком же порядке приводятся остальные легирующие элементы (табл. 1) с их содержанием. Медь - остальное.

Пример.

JIЦ40Mu3A- латунь, литейная, содержащая 40% цинка, 3% марганца, 1% алюминия. JIЦ23A6Ж3Mu2 - литейная латунь с содержанием 23 % цинка, 6 % алюминия, 3 % железа, 2 % марганца, остальное - медь. ГОСТ 17711-80.

2.4 Медно-никелевые сплавы

Медно-никелевые сплавы (ГОСТ 492-73) обладают особыми физическими и химическими свойствами. Коррозионностойкими сплавами являются мельхиоры (система Cu-Ni), нейзильберы (система Cu-Ni-Zn, 5.35 % Ni и 13.45 % Zn) и куниали (система Cu-Ni-Al).

Марка таких сплавов начинается с буквы М (медь), затем идут буквы легирующих элементов и в конце в том же порядке среднее содержание этих веществ в весовых процентах.

Пример.

МНМц15-20 - медный сплав с содержанием 15 % никеля и 20 % марганца.

Таблица 1.

1	А995; АМц;АК12;М00к;БрА10Ж3Мц2;Л85;МНМц43-0,5
2	А99;АМцС;АК9;М0к;БрА11Ж6Н6;ЛО62-1;МНМц40-0,5
3	А95;Д12;АК9ч;М00;БрС60Н2,5;ЛС63-3;МНЖМц30-1-1

4	А97;АМг1;АК9пч;М00б;БрО3Ц12С5;ЛЖС58-1-1;МН19
5	А999;АМг2;АК7;М0;БрОЦС4-4-2,5;ЛС60-2;МНМц3-12
6	А85;АМг3;АК7пч;М0б;БрОЦ4-3;ЛМц58-2;МНЦС16-29-1,8
7	А8;АМг4;АК10Су;М00б;БрОФ2-0,25;ЛЦ30А3;МНЦС 16-29-1,8
8	А7;АК4;АК21М2,5Н2,5;М1;БрОФ4-0,25;ЛЖМц59-1-1;МНЦ15-20;
9	А7Е;АМг3;АК6М2;М0к;БрОФ6,4-0,15;ЛЦ23А6Ж3Мц2;МНА13-3;
10	А5;В95;АК5М;М00;БрО3Ц7С5Н1;ЛЦ40Мц3Ж;МНА6-1,5;
11	А5Е;АМг3С;АК8М3ч;М00к;БрО4Ц7С5;ЛМш68-0,05;МНЦ 15-20;
12	А0;АК6; АК12ММгН;М1ф;БрО4Ц4С17;ЛЖС58-1-1;МНА13-3;
13	А6;Д18;АК12М2МгН;М2р;БрО10Ц2;Л80;МН19;
14	АД0;АМг6;АК12М2;М3;БрО5С25;ЛО90-1;МНМц3-12

3. Содержание отчёта

- 1. Наименование, цель.
- 2. Указать: основной металл, сплав; назначение или способ обработки сплава; химический состав сплава по марке. Варианты заданий занесены в таблицу 1.

4. Контрольные вопросы

- 1. Какие металлы относятся к цветным металлам?
- 2. Как классифицируются латуни?

Используемые источники

- 1. Овчинников В.В. Основы материаловедения для сварщиков: учебник 1-е изд. М.: Издательский центр «Академия», 2014. 256с.
- 2. Моряков, О. С. Материаловедение: Учебник для использования в учебном процессе образовательных учреждений, реализующих программы среднего профессионального образования / Олег Сергеевич Моряков. 6-е изд., стер. Москва: Академия